Course no. : | n/a |

ECTS credits: | 5 |

Lecturer(s): | Prof. Dr. rer. nat. H. Ortleb |

Available: | |

Course type: | Lecture/practical exercises |

Exam type: | Written e. 2h or oral examine |

Exam requirements: | Knowledge about course contents |

Objectives: | After completing the module, students understand the fundamentals of the numerical solution of problems with the computer. They can qualitatively evaluate the numerical results of numerical algorithms. Basic numerical methods can be performed both manually and with a computer and applied to scientific-technical problems. By the end of this course students understand the theory of algorithms such as LU and QR factorization, and are able to apply them for example to least squares calculations. They understand multistep and Runge–Kutta methods for ordinary differential equations. |

Course contents: | This lecture covers basic modules that are relevant to many engineering issues. These include number representation in the computer, condition and stability of algorithms, linear equation systems, LU and QR factorization of matrices, interpolation, least squares method, numerical integration and integration of ordinary differential equations. |

Literature: | [1] W. Dahmen, A. Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer-Verlag, 2008, ISBN-13 978-3-540-25544-4 [2] P.Deuflhard, A.Hohmann: Numerische Mathematik I: Eine algorithmisch orientierte Einführung, de Gruyter-Verlag Berlin u.a. 2002, ISBN 3-11-017182-1 [3] R.Schaback, H.Wendland: Numerische Mathematik, Springer-Verlag Berlin u.a. 2005, ISBN 3-540-21394-5 [4] G. Stoyan, A. Baran: Elementary Numerical Mathematics for Programmers and Engineers, Springer-Verlag Berlin u.a. 2016, ISBN:3-319-44659-2 |

available in modul: | engineering basic modules in semester 9 engineering basic modules in semester 9 numeric mathematics in semester 9 _ 1. technical elective (obligation to vote) CORE ET in semester 9 _ 1. technical elective (obligation to vote) CORE MA MASTER in semester 9 numeric mathematics in semester 8 |